118 research outputs found

    GUNNEL: Guided Mixup Augmentation and Multi-View Fusion for Aquatic Animal Segmentation

    Full text link
    Recent years have witnessed great advances in object segmentation research. In addition to generic objects, aquatic animals have attracted research attention. Deep learning-based methods are widely used for aquatic animal segmentation and have achieved promising performance. However, there is a lack of challenging datasets for benchmarking. In this work, we build a new dataset dubbed "Aquatic Animal Species." We also devise a novel GUided mixup augmeNtatioN and multi-viEw fusion for aquatic animaL segmentation (GUNNEL) that leverages the advantages of multiple view segmentation models to effectively segment aquatic animals and improves the training performance by synthesizing hard samples. Extensive experiments demonstrated the superiority of our proposed framework over existing state-of-the-art instance segmentation methods

    Finding optimal reactive power dispatch solutions by using a novel improved stochastic fractal search optimization algorithm

    Get PDF
    In this paper, a novel improved Stochastic Fractal Search optimization algorithm (ISFSOA) is proposed for finding effective solutions of a complex optimal reactive power dispatch (ORPD) problem with consideration of all constraints in transmission power network. Three different objectives consisting of total power loss (TPL), total voltage deviation (TVD) and voltage stabilization enhancement index are independently optimized by running the proposed ISFSOA and standard Stochastic Fractal Search optimization algorithm (SFSOA). The potential search of the proposed ISFSOA can be highly improved since diffusion process of SFSOA is modified. Compared to SFSOA, the proposed method can explore large search zones and exploit local search zones effectively based on the comparison of solution quality. One standard IEEE 30-bus system with three study cases is employed for testing the proposed method and compared to other so far applied methods. For each study case, the proposed method together with SFSOA are run fifty run and three main results consisting of the best, mean and standard deviation fitness function are compared. The indication is that the proposed method can find more promising solutions for the three cases and its search ability is always more stable than those of SFSOA. The comparison with other methods also give the same evaluation that the proposed method can be superior to almost all compared methods. As a result, it can conclude that the proposed modification is really appropriate for SFSOA in dealing with ORPD problem and the method can be used for other engineering optimization problems

    Smart Shopping Assistant: A Multimedia and Social Media Augmented System with Mobile Devices to Enhance Customers’ Experience and Interaction

    Get PDF
    Multimedia, social media content, and interaction are common means to attract customers in shopping. However these features are not always fully available for customers when they go shopping in physical shopping centers. The authors propose Smart Shopping Assistant, a multimedia and social media augmented system on mobile devices to enhance users’ experience and interaction in shopping. Smart Shopping turns a regular mobile device into a special prism so that a customer can enjoy multimedia, get useful social media related to a product, give feedbacks or make actions on a product during shopping. The system is specified as a flexible framework to take advantages of different visual descriptors and web information extraction modules. Experimental results show that Smart Shopping can process and provide augmented data in a realtime-manner. Smart Shopping can be used to attract more customers and to build an online social community of customers to share their interests in shopping

    MirrorNet: Bio-Inspired Camouflaged Object Segmentation

    Full text link
    Camouflaged objects are generally difficult to be detected in their natural environment even for human beings. In this paper, we propose a novel bio-inspired network, named the MirrorNet, that leverages both instance segmentation and mirror stream for the camouflaged object segmentation. Differently from existing networks for segmentation, our proposed network possesses two segmentation streams: the main stream and the mirror stream corresponding with the original image and its flipped image, respectively. The output from the mirror stream is then fused into the main stream's result for the final camouflage map to boost up the segmentation accuracy. Extensive experiments conducted on the public CAMO dataset demonstrate the effectiveness of our proposed network. Our proposed method achieves 89% in accuracy, outperforming the state-of-the-arts. Project Page: https://sites.google.com/view/ltnghia/research/camoComment: Under Revie

    TextANIMAR: Text-based 3D Animal Fine-Grained Retrieval

    Full text link
    3D object retrieval is an important yet challenging task, which has drawn more and more attention in recent years. While existing approaches have made strides in addressing this issue, they are often limited to restricted settings such as image and sketch queries, which are often unfriendly interactions for common users. In order to overcome these limitations, this paper presents a novel SHREC challenge track focusing on text-based fine-grained retrieval of 3D animal models. Unlike previous SHREC challenge tracks, the proposed task is considerably more challenging, requiring participants to develop innovative approaches to tackle the problem of text-based retrieval. Despite the increased difficulty, we believe that this task has the potential to drive useful applications in practice and facilitate more intuitive interactions with 3D objects. Five groups participated in our competition, submitting a total of 114 runs. While the results obtained in our competition are satisfactory, we note that the challenges presented by this task are far from being fully solved. As such, we provide insights into potential areas for future research and improvements. We believe that we can help push the boundaries of 3D object retrieval and facilitate more user-friendly interactions via vision-language technologies.Comment: arXiv admin note: text overlap with arXiv:2304.0573
    • …
    corecore